Another Tevatron Puzzle: Bunch Length Blow-Ups at 980 GeV

Vladimir Shiltsev, Cheng-Yan Tan

BD/Tevatron Dept

...This phenomena does not affect the Tevatron luminosity (much) but results in higher background rate and (probably) more DC beam [both are unpleasant]

Beam intensities early in store 1313

Some 7% variation in proton bunch intensity <N_p>=180e9/bunch and 30% in pbars <N_pbar>=11e9/bunch

Typical "sigma_s" blow-up event 05/08/2002.

"Badly" behaving bunches #9,18,31,34, others are "good"

while there is only some 5% variation in proton bunch intensity <N_p>=180e9/bunch vs 35% in pbars <N_pbar>=11e9/bunch

"~Facts" about the sigma_s blow-ups:

- 1. Before April'02 we did not see these blow-up (at all?); proton bunch intensity at 980 GeV did not exceed 130-150 e9/bunch
- 2. There were 11 "blow-up events in 36 HEP stores during March 24-May 8 (N_p about 1500→170e9/bunch)
- 3. More statistics on recent stores 8 events in 12 stores

A	В	C	D	E	F	G	Н
1302 8 May 230	170e9	2.0ns	2.3 ns	60 min	42hrs	67hrs	bad
1305 9 May 190	167e9	2.0ns	2.3ns	6 min	12hrs	43hrs	bad
1307 10May 180	179e9	2.0ns			53hrs		good
1309 11May 130	171e9	2.0ns			42hrs		good
1313 12May 060	176e9	2.0ns			40hrs		good
1328 16May0200	186e9	?	?	?	? bad. SE	BDMS da	ta not recor
1329 16May1800	176e9	1.9ns	2.2ns	3 min	??	77 hrs	really bad
1332 17May1930	178e9	1.9ns	2.4ns	6 min	9hrs	83 hrs	really bad
1333 18May 173	181e9	2.1ns			50hrs		good
1335 19May1200	177e9	2.0ns	2.2ns	39 min	40hrs	59 hr	s bad
1337 20May0540	183e9	2.0ns	2.2ns	16 min	19hrs	56 hrs	bad
1340 21May0200	194e9	2.0ns	2.6ns	2 min	?	? 1	eally bad

A – store, date, time; B- total N_p; C, D- sigma_s before and after the blow-up; E- time in the store; F, G- $d\sigma/dt$ before and after, H-comment

Comments:

- a) initial emittance is large (~ ½ RF bucket area at flat top) we need to know what will happen with 3 times smaller emittances
- b) there is natural growth σ_s =2 + (0.03-0.1)ns/hr consistent with known RF noises (some 60 urad in RF phase or/and 70V in voltage), "microphonics" idea
- c) blow-up amplitude varies between 0.2-0.6 ns for RMS σ_s , often occur early in the store
- d) sometimes repetitive blow-ups occur (seems like $\sigma_s \rightarrow 2.6$ ns)
- e) longitudinal feedback does not help much to reduce the natural growth(due to own noises?) and avoid the blow-ups
- there are growing dipole longitudinal oscillations before the blow-up, after the blow-up the oscillations vanish very slowly (1/2 hour) why? (compare we have no longitudinal oscillations due to RF glitches)
- g) there are oscillations of the RF voltage <u>induced by beam</u> oscillations.
- h) the amplitude of the effect varies for different bunches
- i) seems that bunch intensity matters (more frequent blow-ups at higher intensity, but why not every store?)
- j) our ideas HOM experiment (align frequencies), vary RF voltage